cubingpro.com

Back to Home

Monte Carlo Simulation: Probability of 6-Move 3 Edge Cycle Case

We wrote a Monte Carlo simulation program which generates a random 3 edge cycle, and make N random moves, and identify whether at certain point, there is a 6 move 3 edge cycle case, e.g. M' U2 M U2. The result is following

Number of Moves Probability of 6-Move 3 Edge Cycle Case Probability of 6 or 8-Move 3 Edge Cycle Case (with setup)
11.20%4.00%
21.92%5.16%
32.36%6.91%
42.90%8.10%
53.39%9.69%
63.97%9.98%
73.98%11.14%
84.38%12.38%
94.68%13.52%
105.24%14.88%
115.60%15.92%
125.81%16.88%
136.45%18.28%
146.96%18.51%
157.58%19.92%
167.30%21.09%
177.81%22.48%
188.43%23.22%
198.97%23.36%
209.34%24.67%
219.61%25.92%
229.70%26.51%
2310.47%27.34%
2410.56%28.83%
2510.88%29.20%
2612.13%29.18%
2712.42%30.77%
2812.15%31.90%
2912.64%33.00%

In practice, you will likely be doing an insertion from 20-30 moves, so the probability of 6 mover is around 12% and does not increase so much even if you have more moves; the probability of 8 mover is 25 to 33%.

This knowledge might be helpful for you to set expectations when you find a promising skeleton, so you are aware of the expected outcome after an insertion, and decide whether to move forward with an edge insertion. The 6 move edge insertion is relatively easy to identify, compared to corner commutator though.